
II
AD-753 694

USE OF THE. CONCEPT OF TRANSPARENCEY IN
THE DESIGN OF HIERAPRCHICALLY STRUCT11RED
SYSTEMS

D. L. Parnas, et al

Carnegie-Mellon University

Prepared for:

Air Force Office of Scientific Research
National Science Foundation

November 1972

DISTRIBUTED BY:

National Technical Information Servico
U.. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

-. -- _- -

L'CUt~TC~R~ A T).

(Steutiov C IFS0fi.?ts i of -110,.'G ýf ~, eI d indvtino .~ no to tici rau at be gnte#3e mhen the a ve.Cal ,ePo?t is clIn %fiedl

v R (11INA I. NQ A C .. VITT (Cor.ate &tfhr) :~a. REPeNT SrCUkITY CLASSIFICATION
ConpterScience Dep-Irt:71HIL

UNClASSIFIED
Carnegie-Mellon Univers izy Flb. skOUP
Pittsburgh, Pa. 15213

.REPORT TITLE

USE OF TH4E CONCEPT OF TRANSPARENCY IN THE DESIGN OF HIERARCHICALLY STRUCTURElD
SYSTEMS

E.0SCRIP TI VE NO TCl (j'peof t~pot9 *r~d ine~u~ive date#)

Sc ieritif icInei
S. AUTHORS) (First Rare,* mniddle bitld. 14.1 naflam)

D. L. Parnas and D. P. Siewiorek

0.RPORT DATE 70. TOTAL. NO. OF PAGES 7b O.F Raw$

November, 1.972 30
S CONTRACT OR GRANT #40. to. ORIGINATOR'S REPORT PJUMOEMd5

F44620-70-C-O107
6- PNOJECI'NO. 9769

61102F. b. OTHER REPORT NOIst (At?? othern nbets Meta? nay be assigned

is0 DISTRNIGUTION #TATCMENT

FlApprcved for public release; dietrihution unlimited.

i1-SUPPLEMENTARY NOTES 12. SPONSORINg MILITARY ACTIVITY

IAir Force Office of Scientific Reaearch(N.)
TECH, OTHER J1400 Wilson Blvd.

Arlington, Va. 22209
02. A&STNACT

eThis'paper deals with the design of h-lerachically structured programing

systems. It develops a method for evaluating the cost of requiring programmners
I to work with an abstraction of a real machine. A number of examples from

hardware and software are given as illustrations of the method.

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Departme.nt of Ca~rnnarc

Springf.ied VA 22131

rjFORM 17 _ _ _

I NOVes'4

USE OF THE CONCEPT OF TRANSPARENCY IN
THE DESIGN OF HIERARCHICALLY STRUCTURED SYSTEMS

D. L. Parnas and D. P. Siewiorek
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, P&. 15213

Approvod for ..,h•-¢ release;
distributio:n unlimited*

This work was supported by the National Science Foundation __

under grant GJ 30127 to Carnegie-Mellon! University and also •

by the Advanced Research Projects Agency of the Office of• !

the Secretary of Defense (F44620-70-C-0107). monitored by

the Air Force Office of Scientific Research.• :

S B

-Z

0-

2.3,5 Goal #10 The location and staging of capital
facilities and public acquisitions so as

to serve immediate ind future needs and

to promote a desirable pattern of land
development,

Capital programming is one of the basic tools of plan

implementation. Short of the direct application of police power

to control land development, the location, type and timing of

State expenditures is one of the best methods for producing a

desirable land development pattern. A primary consideration should

be the maximization of the social benefits derived, from any

capital investment.

12

7/27/72

USE OF THE CONCEPT OF TRANSPARENCY
IN THE DESIG"N OF HIERARCHICALLY STRUCTURED SYSTEMS

D. L. Parnas and D. P. Siewiorek
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pa. 15213

INTRODUCTION

The starting point of this paper is the goal of constructing systems

with a hierarchical structure of the type first illustrated by E. W.

Dijkstra in [1,2]. Each level in such a system provides a virtual machine

which hides (or abstracts from) some aspects of the machine below it. In

desigining such a system we repeatedly face a question which a hardware

designer faces only once: "How do I know that the instruction set provided

by this machine is suitable for the programs which users will want to run

upon it?" There is a risk in freezing the design of a level, the risk

that we may force some inefficiency upon our final system. We may even

eliminate some essential capability.

The purpose of this paper is to introduce a concept which appears to

be useful in thi, design of hierarchically structured systems. For purposes

of comparison, we shall review an approach which was suggested earlier, then

introduce and illustrate the main concepts of this paper.

THE "TOP DOWN" OR "OUTSIDE IN" APPROACH

Several papers [3,4,5] suggest that the solution to software design

problems lies in beginning with a precise description of the desired sysitem

and deriving the internal structure from it. This would prevent design

- =- •-- --- - ---- = -==-~ 4

-2-

decisions which remove necessary capabilities and eliminate the risk of

constructing a system with unexpected undesirable properties. The papers

referenced were all concerned with providing simulation tools which could be

used to verify that each decision was an adequate one. The approach was called

"top down" or "outside in".

In this paper we c:hall refer to this approach as "outside in" rather

than "top down" because the latter appellation often leads to a confusion

of this approach with the levels introduced by Dijkstra (1]. The "outside

in" approach and that of Dijkstra cannot be compared as they are addressing

quite different questions. Dijkstra was not discussing the sequence in which

design decisions were made, he was discussing the structure of the final

product. Higher levels in Dijkstra's sense are not necessarily "closer to

the outside" in our sense. Some low level features may appear on the "outside".

The "outside-in" approach has been discussed in several places (e.g.,

[6]) and found to involve a number of difficulties.

1. The necessary specification of the "outside" is often difficult

to obtain. In addition to the obvious difficulty in making such

design decisions, it is difficult to express those decisions

precisely without implying additional, internal , design decisions.

2. The derivation of a design from such a specification it often not

feasible. The set of possible internal structures for a given

external specification is so large that oneneeds some additional

constraints before a search can be begun. These constraints are

usually information about the "inside" (e.g., the hardware).

-3-

3. In attempting to follow the "outside in" procedure it is quite easy

to specify internal mechanisms which would simplify implementa-

tion of the desired outside but would themselves be impractical

to implement.

4. It is difficult to apply this method if one is actually designing

a set of systems whose only description is "general purpose"

5. As was pointed out in [71 the application of this method may

result in a piece of software which is unnecessarily inflexible

(see also r8]).

6. it is quite common to design software in a situation where the

inside is already fixed (e.g., the hardware for an operating

system, or the operating system for a piece of application soft-

ware).

It is for these reasons that we have found it necessary to abandon the

pure "outside in" approach and adopt some additional -procedures which are

actually of an "inside out" or "bottom up" nature. We do not propose the

following as a procedure to be used instead of the "outside in"; we propose

these as complementary approaches which must be used in some judicious com-

bination according to the needs of the situation.

"TRANSPARENCY" OF AN ABSTRACTION

•We wish to consider a typical stage in a "bottom up" design process.

We assume that we have a well defined lower level and are considering the

1. We are indebted to C. W. Koot of RV Philips-Electrologica (Apeldoorn, The
Netherlands) who was the first to point out to us the difficulties introduced
when "general purpose" is included in the description of a future product.

-4-

design of the nest highest level, The lower level may be either hardware

or an intermediate level in our software design. We shall refer to either

as the base machine. We assume that we are considering!a proposal for a

new abstraction to result in a new programmable machine which we sball refer

to as the virtual machine.

We must determine the set of states which is possible for the base

machine under arbitrary programs in the "language" of the base machine.

Also oi interest is the set of state sequences which can be obtained by

arbitrary base machine language programs.

For any given implementation of our virtual machine we can determine a

set of base machine states and sequences of base machine statee which is

obtainable by running programs written for the virtual machine.

If the virtual machine and its implementation were completely transparent,

any base machine state and any sequence of base machine states which we could

obtain by programing the base machine rould also be obtainable by programing

the virtual machine. In the more comn situation, where some base machine

sequences cannot be obtained by programming the virtual machine, we term

the missing state sequences the loss of transparency.

In the above we have defined transparency as a property of a triple

consisting of the base machine, the virtual machine, and the implementation

of the virtual machine on the base machine. In many cases, however, we can A

find that there is a loss of transparency for the virtual machine, base

machine and any conceivable or likely to be used implementation. In such

cases we shall speak loosely of the transparency of the virtual machine for

a given base machine.

In fact, in many cases we can ascertain a lack of transparency for a

given virtual machine and any base machine likely to be considered. In

tho ie cases we can speak very loosely about the transparency of the virtualI�,u.chlne wIthout reference to a specific base machine.

For the purposes of the present paper it is sufficient to rely on our

intuitive understandingo of what the properties of reasonable base machines

and certain virtual machine propositions are. For many interesting software

design problems there is no need to resort to formal models.

Preliminary Example

The following example is intended to illustrate the concept of trans-

parency and to make the point that a loss of transparency is often one of

the goals of a design.

Figure 1

Figure 1 shows a diagram of a low level portion of a four wheeled vehicle.

Note that each front wheel is connected to two strings and should a driver

use such a vehicle, he would control the steering by pulling on a total of

four strings.

It is probably feasible for well coordinated people to learn to use

such a control mechanism, but it is certainly not conventient or pleasant.

Figure 2 shows the addition of a higher level mechanism which uses the mech-

anism of Figure 1 to provide a more convenient virtual machine for the driver.

-6-

The ropes have been wrapped arouni a steering wheel and attached so that

now the vehicle can be controlled by the more easily learned mechanism of

turning the wheel in the desired direction. If this is properly done, it

is a very good abstraction from the real machine. (If it is not properly

done, it may introduce all sorts of inefficiencies, including excessive tire

wear and poor driving characteristics.)

steering
wheel

Figure 2

The point of this example, however, is that even if this is dove in

an ideal way, the abstraction is not transparent in the sense just defined.

Figure 3 shows some of the states which were possible with the lover level

control mechanism. Positions (a) and (b) will be possible by the use of

any reasonably designed steering wheel implementation. (c) and (d) will

no longer be possible with reasonable implementation. V.ery sharp turns (e)

could be eliminated by some designs and permitted by others.

_1} D] 0 -AA

(a) (b) (c) (d) (e)

Figure 3

LL

-7-

If the steering wheel were an abstraction proposed in a "bottom up"

design process, we would ask that the designer use the concept of transpazency

in evaluating the validity of the proposed design. In this particular case

the lack of transparency with regard to (c) and (d) would be considered

acceptable because situations in which those positions are useful are extremely

rare. The lack of tranou.irency for those cases can be considered a desirable

feature of the abstraction; one of the purposes of introducing certain ab-

stractions is to prevent the occurrence of undesirable states. The loss of

(e) is more difficult to evaluate; it is undesirable, but it might be acceptable

if the turning circle would be adequate anyway or if there was a cost decrease

obtained by eliminating this extreme position.

The fundamental assumption behind our proposed "bottom up" approach

is that the primitive mechanisms from which one builds a system have the

ability to perform all the functions finally expected of the system. (If

that is not true, the project is hopeless from the start.) If we evaluate

each level by examining the loss of transparency as illustrated above and

make certain that nothing desirable is lost, we may bL assured that the

upper levels will still have the desired capabilities.

The remainder of this paper will be devoted to examples from the field

of computer systems.

"REGISTER" FOR MARKOV ALGORITHM MACHINE

Figure 4 is a specification of a module developed for use in a Markov

algorithm interpreter or compiler. One can view this module as providing

a virtual machine which has a register which has essentially the same capabili-
A

ties as that in the idealized Markov algorithm machine. Characters may be

-8-

DEFINITIONS

INTEGER PROCEDURE: LENGTH
possible values: an integer 0 - length : 1000
effect: no effect on values of other functions
parameters: none
initial value: 0

INTEGER PROCEDURE: CHAR(M)
possible values: an integer 0 : CHAR i 255
parameters: I must be an integer
effect: no changes to other functions in modules

if I ! 0 V I > LENGTH then a procedure call to a user written
routine RGERR i.s performed. (program cannot be assembled
without such a routine)

initial value: undefined

PROCEDURE: INSBRT(I, 3)
possible values: none
parameters: I must be an integer

J must be an integer
effect:

if I< 0 V I > 'LENGTH' V J < 0 V J > 255 thena subroutine call to
a user written routine INSAER is performed. (routinG required)

else LENGTH - 'LENGTH' +1 if LENGTH ; 1000 a subroutine call to
user written function LENGER is performed.
CHAR(K)if- K 1; Is 'CHAR (I) -

if K - I+l1 J
if K > 1+1, 'CHAR(K-1)'

PROCEDURM: DELETZ (I, J)
possible values- none
parambters: I, J must be integers
effect:

if I 0 V J < 1 V I+J > 'LENGTH' +1 then a procedure call to a
user written routine DELERR is performed.

else
LENGTH - 'LENGTH' - J.

CHAR(K) * if K < I ttien 'CHAR(K)'
if K 2 X then 'CHAR(K+J)'

Figure 4 22

Az

inserted and deleted at any point in the string, etc. The one fundamental

difference is that, because this is a specification for a real piece of

software, there are limits to its capacity.

Informally, the four operations provided can be described as follows:

"LENGTH" reveals the number of characters in the register.

"CHAR(I)" gives the Ith character in the register if I I length.

"INSERT(I,J)" places a new character at the specified point in the register.

"DELETE(I,J)" removes a character in the register.

At first glance this appears to be a good design. In fact, it was used

unsuspectingly and, for quite a while, the faults were not apparent to any of

those involved in the project. The fault is easily noticed as a loss of

transparency.

Such a module has many possible implementations. We list just a few of the

more interesting or useful ones:

1. Register is an array. Access i S, indexing; inserts and deletions

require shifting.

2. Register is a one-way linked list. Access is by linear search

counting for the Ith item requested. Inserts and deletions

require list processing operations - no large shifts.

3. Register is a two-way linked list. *Access is by search from either

end or from the last point accessed. Insertions require list

processing operations.

4. Register is a linked list with an "index" pointing to a number of

points within the list to reduce searching.

-10-

5. Register is a linked list of small arrays. Most small changes

can be done on a single small array as in implementation (').

Larger changes require addition or removal of one or more small

arrays. (The small arrays might be machine words in which up to

six characters are packed.)

Each implementation would be good under some set of operating conditions

and costs (e.g., (1) is the minimal coding t2me version).

We can easily imagine having designed an abstract machine which con-

tained operators which could be used for one of the above implementations.

We refer to that machine as the "base" machine. On any likely base machine

there will be simple sequences (e.g., a single store operation) which replace

a single character in the register with another single character. These

sequences involve no shifting in implementations (1) or (5) and no linked

list operations in implementations (2)-(5). These sequences cannot be evoked

by calling the "virtual machine" operations defined above. Thus, this design

has a loss of transparency because there are sequences on the base machine

which cannot be evoked by commands given to the virtual machine. Further,

we see that the lack of transparency is undesirable because (1) the missing

sequences are both harmless and useful, (2) the work they accomplish can only
2

be performed by much more expensive sequences evoked by the higher level.

The above loss of transparency can easily be corrected by the addition

of the "alter" command specified in Figure 5. In our experimental project

2 Even if we were willing to accept the loss of efficiency, we would have
difficulties because of the psychological nature of good professional pro-
grammers. Most feel such revulsion at the wuriting of inefficient programs
that they would seek some way of going beneath the interface of the base ma-
chine in order to !=prove performance. In that case the modular structure
would be lost. Such behavior is readily apparent in much production software.

iiI A

we did this during the project. Because of~the "upward compatible" Tiature

of the improvement, old programs coninued to work but new ones could be

written to be more efficient. In 'no case did we have to reveal the inner

workings of a module to gain iir efficiency.

PROCEDURE: ALTER(1., J)
possible values: none
parameters: 1, J must be integers
affect:

if I -S 0 V I > 'LENGTH' V J < 0 V J > 255 then a1 subroutine call
to a user written routine ALTERERR is pcrJformed.

CHARM if I T then 'CHAR(K)'

ve~ ~ ~ ~ ~I Ki tsdunghepoet..Bcueo then Juwr optil" tr

ifK~thenJFigure 5

For some tore we considered the amended design to have the proper

degree of transparency,,but further reflection hns indicated an additional

problem. In most of the base machines there exist sequences which

efficiently insert several characters at a givqn point in the register.

For example, in implementation (1), if we wished toli~nsert four characters,

we could do so (on the base machine) by shifting the information right

four places and then inserting the four characters. By calling the

commands proposed, the base machine would probably perform four one place

shifts instead of the.single four plce shift.

At this point there appear to be three fundamentally distinct

solutions to this design problem. Each'has advantages and disadvJntages

and we are unable to make a general choice among them.

1. A more sophisticated implementation. The word hprobably" occurs

in the above paragraph becausd there do exist possible imple .

mentations which would not incur the loss of efficiency described.

For example, 'Insert" might be implemehted so that it would not0

l pi

Actually poi terfomte ipseartionse inhr he basicdatal dstructure

souin -othsdein rblm Each ha adatae an-iavnae

-12-

until a call was made to insert at a different point. In

this way the module could "store" commands until it had enough

information to determine the most efficient way to perform

the insertion series. Deletes are also possible in this way.

2. String parameters. We could modify the routines defined so

that they accepted strings as parameters. In this way the

insertion of a string could be specified as a single operation.

3. Useof "open". We could add an "open" instruction which would

essentially mark a place i1 our register. Subsequent insert A

and delete operations would have the marked place as their

implicit positional parameter. Modifications of the funda-

mental data structure could be postponed until a "close"

command or another call of "open".

The first solution forces the module to make decisions which might

not pay off. For example, such an implementation would be relatively

slow if used for random insertions of single characters. The primary

advantage of the first solution is that it has the same specification

as the earlier solutions so that one could freely choose between a simple

or a sophisticated implementation without changing the zest of the system.

The second solution's primary disadvantage is that it requires a

more complex interface between the module and the rest of the system.

Some format for the passing of string parameters must be agreed on. This

is undesirable from the point of view of [9]. It might also result in

a great deal of excess computation being done since strings might be

assembled twice; once in the module and once in the parameter format.

A good implementation in this direction is not impossible, but it

certainly is difficult.

-13-

13

The third solution offers the greatest efficiency potential, but it

is a little more revealing of internal structure. In a sense, this solu-

tion shifts the burden assumed by the module in solution (1) to the program

which uses the module. Although all the solutions have situations in which

they would be appropriate, this is probably the best "general" solution.

The above discussion permits us to discuss a fundamental "tradeoff"

which exists between transparency and flexibility of a design. In the

above examplce we made the point that the lack of transparency intro-

duced was true for all reaionable implementations of the proposed design.

There are, however, situations in which a proposed virtual machine would

be adequately transparent for some base machines, but would have a distinct

loss of transparency for others. A design which would increase the trans-

parency for one machine may pose great implementation difficulties or

inefficiencies for another base machine. We can offer no better advice

than that the designer must be alert for such situations and be prepared

to make a difficult decision.

A HARDWARE EXAMPLE

As an example of a loss of transparency at the hardware level con-

sider the HP 2116. The HP 2116 is a 16-bit, general purpose minicomputer.

A simplified block diagram is shown in Fig. 6. The HP 2116 contains six

registers: memory buffer (MB), memory address (MA), program counter (P),

two accumulators or general purpose registers (A and B), and an instruc-

tion register (I).

The read/write memory cycle is divided into eight minor cycles.

In each minor cycle one or more micro-operations can be performed. For

-~~~~--- ~

Timing Read/

II
Reunto

P rora cute AU rthetc n Lgi Ui

MA Memory Address Register -16 bit wide data or control path

MB Memory Buffer Register :D-16 bit vector ANiD

Fig. 6. Simplified block diagram for the HP 2116.

- 15 -

example, the A register can be read to the R bus during one minor cycle.

A partial list of the micro-operations which can be performed ii a minor

cycle is given in ISP notation in Table 1 [15].

To see how these micro-operations may be combined to form a machine

instruction consider the timing diagram for the RAL (rotate A register

left one bit) shown in Fig. 7.

The ISP code describes the RAL instruction execetion as follows:

RAL-(

TO: (MB +- 0); next

TI: (I +-0); next

T2: (I *--B<15:10>); next

T3: (ILBus - A) ; next

(TBus 4- RaBus X 2) ; next

(A - TuBus); next

T6: (R-Bus +- P); (SuBus +- 1); next

(T-Bus •- •Bus + S.Bus); next

(P *.- T,-Bus))

The base machine for the HP 2116 can perform a combination of

the micro-operations listed in Table I during one minor cycle. Eight

minor cycles can be "stacked" together to form a machine instruction.

Note, however, there are some physical limitations imposed by the

structure of the base machine . First, the data read from memory

during the current memory cycle isn't available until half way through

T2. This effectively limits instruction execution to T3-T7. Also for

¢_¼

S~-16-

Table 1. A partial list of micro-operations for the HP 2116

Read Micro-operations

SwBus - MB

SuBus - MA

R.Bus - P

P,RBus "- A
R•Bus ,- B

Store Micro-operations

MB - T•.us

MA T.Bus

P 4" T.Bus

A ,- T.Bus

B -- T.Bus

Function

T.Bus 4- RwBus A S.Bus

T.Bus 4- R.Bus V SuBus

TwBus 4- R.Bus + SwBus

T.Bus - R.Bus x 2

T.Bus - R.Bus / 2

-- - ~ -.~-~ -- ~ t

-17-

Read Memory Write Memoryr..,"/ ,," z '//"/

TO TI T2 T3 T4 T5 T6 T7

(MB*-0) (1+-0) (I,-W<15: 1O>) (RuEusu-A); next (RLBus(-P);
(T.BusR. .BuasX2); next (S.Bus*-l); next
(A+-TBus) (T.Bus+-Rus+S-Bus); next

(P4-TaEus)

Fig. 7. The timing diagram for rotation of A register.

S-~ N

-18 -

data to be entered into memory it has to be in the MB by the middle of T3.

The bus structure also limits some operations. For example, the A and B

registers cannot be used during the same minor cycle because they both are

connected to the R Bus. Finally some sequence of operations might be

essentially a no-operation (NOP) such as ((RL.us 4-A) next;

(Taus -Raus A SuBus)). Since there is no store operation the A

register remains unchanged.

When we look at the instruction code provided to the user we find

that some of the micro-operation sequences which were possible at the

base machine level cannot be obtained by sequences of machine instructions.

Consider for example, the shift-rotate instruction group. In

addition to the restrictions imposed by the base machine structure the

following rules apply to all instructions in the group:

1. Minor Cycles T3, T4, T5 are used for instruction execution.

The other minor cycles are used for housekeeping chores such

as instruction decode, incrementing program counter, etc.

2. All shifts and rotates take place in T3 and T5.

3. All skip conditions are checked during T4. If the skip

condition is met t± flag is set so that two is added, instead

of one, during the update of the program counter.

Since the machine instruction set allows at most two one bit shifts per

instruction, two machine instructions are required to perform a multiply

by eight. The base machine can perform the multiply by eight in one

-19-

machine instruction as indicated by the following ISP.

RAL8 -4(

TO: (MB *- 0); next

Ti: (14- 0); next

T2: (I M-B<15;1O>) ; next

T3: (RaBus -A) ; next

(TaBus - RBus X 2); next

(A *- Taus) ; next

T4: (RaBus 4-A); next

(TaBus •- Raus X 2); next

(A +- TaBus); next

T5: (RLBus + A); next

(T Bus (- R.Bus X 2); next

(A +- TaBus) ; next

T6: (Ra.us ,- P); (S aus +- 1); next

(TaBus <- R.Bus + Sa.us); next

(P 4- TBus))

As another example of a loss of transparency consider a memory

reference inetruction. The instruction in Fig. 7 was a register referance

instruction and could be executed in one major cycle time. In contrast,

a memory reference instruction requires at least two major cycle times:

the first to fetch the instruction, the second to fetch the operand.

During the instruction fetch major cycle of every memory reference

instruction the address portion of the mewory word is loaded into the

memory address register. This can occur any time after T2 when the

-20 -

instruction is known co be a memory reference instruction. During this

time a predesignated register could be added to the address portion of

the memory reference instruction. Thus base-displacement (using one of

the two accumulator registers as a base register) or relative addrensing

(using the program counter as the added register) could be performed by

the base machine. The ISP for V:'.a fetch portion of a memory reference

instruction using base-displacement addressing is as follows.

Fetch -, (

TO: (MB ,- 0); next

TI: (I- 0); next

T2: (I i-MB<15:1 >); next

T3: (RLBus +-A); (S.•us +-MB<9:0>); next

(TuBus 4- LaBus + S.•us); next

(MA Tw us))

Whereas the multiply by eight sequence of micro-operations would

be relatively cheap to add to the machine language level machine (add

some extra decoding to select an unused bit pattern as the op-code) the

cost of enhanced addressing modes may be higher. An alternate design

using the same base machine might use a limited memory reference class A

of instruction (e.g., Load, Store) with enhanced addressing modes and

a large class of register reference operations. Yet another design would

use double words for memory reference instructions. The first word

could contain the op-code and addressing information, the second the 417

address portion. It is not clear which of these three virtual machine

is more desirable.

- 21

AN UNSOLVED TRANSPARENCY PROBLEM FROM THE OPERATING SYSTEM AREA

The following example is a problem which we consider to be an

important unsolved research problem.

One of the most difficult items in the programming of an operating

system is the coordination and synchronization of many concurrent activ-

ities. The handling of interrupts (the hardware devtce available for

coordinating concurrent activities) is very difficult for a programmer

and likely to introduce errors. For this reason, several operating

system designers have introduced an abstract machine for which interrupts

no longer exist.. Instead, the machines are provided with "process

synchronization primitives" which can be used to allow synchronization

and communication between several cooperating processes which are, at

least conceptually, operating asynchronously and in parallel. Among

the better known of these are those of Dijkstra [1,103, Saltzer (11],

and P. B. Hansen [12, 133. If all process synchronization at all levels

(except the lowest which implements the primitives) to be handled in

terms of the primitives, their transparency is an extremely important

issue. The loss of any of the fundamental abilities to coordinate -14

concurrent activities would seriously interfere with che usefulness of

the operating system.

It is difficult to make a precise determination of the trans-

parency of such primitives because we do not have a precise expression

of the essential capabilities of the base machine. We can, however,

discuss two of the mentioned primitive systems with respect to a

"typical" interrupt system. For both cases some lack of transparency
7z

=42.

- 22 -

can be shown, but the question of "undesirable" lack of transparency

remainsr a matter of opinion.

Consider first the following situation: We wish to have two

cooperating administrative units operating in parallel at least part

of the time. One of them is primarily computation and occasionally

determines that it needs certain records from the disk. Fortunately,

it determines the name of the record it needs well in advance of the

time that it must have the record in order to continue. It sometimes

determines the names of many records (e.g., 10 or 12) simultaneously. In

those cases it must process the records one at a time (an error would be

introduced if two were processed at once), but the order in which they

are processed is irrelevant. The other process (or perhaps a group of

processes) can care for the finding of the records on the disk and

bringing them to core. The computational process will proceed t •til

it needs one of the records requested, and if it is not available, will

then wait for it. The disk handling process or processes should bring

the records to core in an order unpredictable by the computational process.

For optimum use of processing resources, etc., we should like to see the

computational process send one message to the others with the names of the

requested processes but receive a "signal" as each record arrives su that

it will not have to wait for all the records to arrive before beginning !Y

its work.

On any reasonable base machine it would be possible to set up such

signaling (using the primitives from the T.H.E. system, for example).

-23-

Using the primitives used by Hansen and his colleagues in the RC4000

system [12] we cannot set up such conventions. That system has a

restriction on interprocess communication so that there is a reply

for every message (1:1). In this way the computational process must

either send 12 messages or wait for a single reply. (An even more expen-

sive possibility is to send one message, wait for reply, then receive 12

messages and send 12 replies.) The fact that there is a lack of trans-

parency is clear; whether. or not it is an undesirable one is a matter of

opinion. Hansen has stated [143 that the restriction was introduced as

a means of detecting certain common errors and that the restriction was

not significant in the situations for which the system was intended.

Another lack of transparency in [12] results from a decision to

transmit an eight character message with each synchronization signal.

Thus sequences on the base machine with simply synchronization bNt with-

out such a message are not available through the virtual machine or

nucleus. This was a decision based on knowledge that, in the intended

application areas, synchronization without communication of a message

ivuld not be needed. Apparently the system was not intended to be able

to handle teletype communication on a character at a time basis at the

nucleus level. It would be unfortunate if each character arriving were

handled with an eight character message and similar reply; some lower

level mechanism must be used.

It is interesting to note that the primitives used by Dijkstra in

T.H.E. do not have this particular lack of transparency. From another

point of view it is possible to make certain programming errors with

- 24 -

those primitives that would be detected by the RC4000 system nucleus [14].

The authors of this paper believe the transparency of Dijkstra's

primitives is an open question; in fact, ft is a question which requires

careful definition. We have seen statements of the problem which would

yield a negative answer [16]. On closer investigation, it appeared that

the statement of the problem eliminated solutions which would be acceptable

on practical grounds [17]. The heart of the difficulty lies in our ability to

reassign operating system tasks among processes (e.g., to increase the

number of processes) to avoid an apparent limitation of the primitive

scheme. Since we abstract from the concept of interrupt, supply the

synchronizing primitives, and introduce the concept of process simul-

taneously, the set of achievable computations is very hard to characterize.

From a practical point of view, the ability to stop a process which

is not executing a synchronization primitive seems available on the base

machine, seems essential, and jeems to be missing with Dijkstra's

primitives. All attempts to go beyond this statement have failed to

date. This example is included in the hope that others will see fit to

investigate it further.

"SUGGESTIVE TRAHTSPARENCY"

One example of a lack of transparency which resulted in a perform-

ance difficulty occurred in the design of virtual memory mechanisms.

Usually the virtual machine provided no means of indicating to the

mechanism that a segment contained useless information. As a result,

I -- 5---.-

-25

many old save areas and similar useless items were moved between core and

backup store.

This is one of many situations in which a weaker form'of trans-

parency is important. It is often necessary that a mechanism be able

to receive susmestions about certain baselmachine sequences 'although the

virtual machine user is not able to cause those sequences. 'The user of

a virtual memory mechanism should be able to suggest removal of a segment

by indicating that he will not need it again. He must not be able to

cause such removal since there may be other users of 'the segment or the

optimal time for removal may not occur untililater.

"MISLEADING TRANSPARENCY"

A related, problem occurs when the design of the virtual rachine

suggests that certain virtual machine programs are efficient although:

they are actually expensive on the base machine. A virtual memory

mechanism which simulates a very large random access memoty is an example

of such a design. To use such a virtual machine efficiently one must

have certain additional information. It is often possible and prefer- ,

ible to design a virtual machine in which the expensive sequences, are

I
either impossible or difficult to evoki.

OUTSIDE IN AND BOTTOM UP PROCEDURES IN COMBINATION

Advocation-of design from the outside in is based on the engineering

r trule that one should not begin t• de'sign an object that is not fully

X

r -=-- -~ - - -

- 26.

specified. It is difficult to reject this precept. Whenever one begins

td build an object with only a muddy view of what it will be, one gets a

muddy object.

The difficulties with the outside in approach come because of a

number of peculiar characteristics of software engineering.

1. The economics of the industry are such that one is seldom

designing a single object; we are usually designing a family

of related objects. (Only a proper subset ol that family will

actually ever exist.)

2. Because of our limited experience with man-machine symbiosis

it is often impossible to specify the outside before construc-

tion and not want to change it afterwards. As was pointed out

in (7] the outside in procedure often adds difficulties in

such a change.

In software we begin with a specification of the family of objects

'one wishes to construct. The technique described in (18] allows one to

describe parameterized families of objects, but the members must be

highly similar items. To describe a broad family of objects we must

describe a set of lower level mechanisms which will be common to all

membera. The family being designed consists of all possible "tops" for

that lower level structure. It is at this point that the concept of

!transparency becomes important. By use of this concept we may assure our-

selves that the class of tops which can be built upon the lower level

structure includes the family of objects that we set out to design.

-27-

References

(1) Dijkstra, E. W., "The Structure of the T.H.E. Operating System, CACM
May 1968.

(2] Dijkstra, E. W., Notes on Structured Programming, Report of the
Technische Hoogschool Eindhoven, Eindhoven, The Netherlands.

[3] Parnas, D. L., and J. A. Darringer, "SODAS and a Methodology for
System Design", Proc. AFIPS 1967 Fall Joint Computer Conference,
pp. 449-474.

(4] Zurcher, F. W. and B. Randell, "Multi-level Modeling - A Methodology
for Computer System Design", IFIP Proceedings 1968.

[5] Parnas, David L., "More on Simulation Languages and Design Methodology
for Computer Systems", Proc. SJCC 1969, 739-743.

[6] Gill, S.,"Thoughts on the Sequence of Writing Software", in Software
Engineering, report of a conference held in Garmsich, Germany,
October 1968.

(7] Pernas, D. L., "Information Distribution Aspects of Design Methodology",
Proceedings of IFIP Congress 1971.

[8] Braden, et. al., An Implementation of MVT, UCLA report.

[9] Parnas, D. L., "On the Criteria to be Used in Decomposing Systems into
Modules", to appear in Communications of the AC((Programming Techniques
Department).

(10] Dijkstra, E. W., Cooperating Sequential Processes, report of the
Technische Hoogschool Eindhoven, Eindhoven, The Netherlands.

[11] Seltzer, G., Traffic Contro. in a Multiplexed Computer System, MIT
thesis.

[12i Hansen, P. B., "The Nucleus of an Operating System", Communications of
the ACM, April 1970.

[13] Hansen, P. B., RC4000 Reference Manual, published by Regnecentralen,

Copenhagen, Denmark.

[14] Hansen, P. B.. private discussions.

[15] Bell, C. G. and A. Newell, Computer Structures: Readings and Examplee,
McGraw Hill Book Co., 1971.

[16] Patil, S. S., "Limitations and Capabilities of Dijkstra's Semaphore
Primitives for Coordination Among Processes", Project MAC, Computational
Structures Group Memo 37, February, 1971.

-28-

(17] Parnas, D. L., On A Solution to the Cigarette Smokers' Problem (with-
out conditional statements), Technical Report, Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, Pa., July, 1972.

(18] Parnas, D. L., "A Technique for the Specification of Software Modules
with Examples", CACH, May, 1972.

4-1

